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We investigate the statistics of fluctuations in a classical stochastic network of
nodes joined by connectors. The nodes carry generalized charge that may be ran-
domly transferred from one node to another. Our goal is to find the time evolution
of the probability distribution of charges in the network. The building blocks of our
theoretical approach ax&) known probability distributions for the connector cur-
rents, (2) physical constraints such as local charge conservation,(3nd time

scale separation between the slow charge dynamics of the nodes and the fast cur-
rent fluctuations of the connectors. We integrate out fast current fluctuations and
derive a stochastic path integral representation of the evolution operator for the
slow charges. The statistics of charge fluctuations may be found from the saddle-
point approximation of the action. Once the probability distributions on the discrete
network have been studied, the continuum limit is taken to obtain a statistical field
theory. We find a correspondence between the diffusive field theory and a Langevin
equation with Gaussian noise sources, leading nevertheless to nontrivial fluctuation
statistics. To complete our theory, we demonstrate that the cascade diagrammatics,
recently introduced by Nagaev, naturally follows from the stochastic path integral.
By generalizing the principle of minimal correlations, we extend the diagrammatics
to calculate current correlation functions for an arbitrary network. One primary
application of this formalism is that of full counting statisti¢CS), the motivation

for why it was developed in the first place. We stress however, that the formalism
is suitable for general classical stochastic problems as an alternative approach to the
traditional master equation or Doi—Peliti technique. The formalism is illustrated
with several examples: Both instantaneous and time averaged charge fluctuation
statistics in a mesoscopic chaotic cavity, as well as the FCS and new results for a
generalized diffusive wire. @004 American Institute of Physics.
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I. INTRODUCTION

Consider an exclusive nightclub with a long line at the entrance. A bouncer is at the front of
the line to keep out the riffraff. At every time step, a person is accepted inside the club with
probability p, or rejected with probability 1p. Inside the club, people stay for a while and
eventually leave. At every time step, the probability a person leavgs\ige want to answer a
guestion such as “what is the probability tliatpeople leave the club aftértime steps?”

Assuming thatp and g remain constant, the situation is simple and we can easily solve the
relevant probabilistic problem. However, in realistic situations this rarely happens: The manage-
ment wants to make money. If the club is almost empty, they instruct the bouncer to be less
discriminating, while if the club is almost full, the bouncer is to be more discriminating. Thus,
becomes a function of the number of people in the club. People will be more likely to leave if the
club is very crowded, sq is also a function of the number of people inside the club. The problem
posed now is much more difficult because of the presence of feedback: The elementary processes
change in response to the cumulative effect of what they have accomplished in the past.
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This simple example captures all the basic features of the problems we wish to consider.
Although the example was given with people, the actors in the probability game may be any
quantity such as charge, energy, heat, or particles, which we will refer to simply as generalized
charge. Similarly, the nightclub can be a mesoscopic chaotic c]aaitia.irth—death proceszsa
biological membrane channektc.

Historically, general stochastic problems are solved with the master equation. The time rate of
change of the probability to be in a particular state is given in terms of transition rates to other
states. This approach has had great success and leads naturally to the Fokker—Planck and Langevin
equationd. However, once the master equation is given, the solution is often quite difficult to
obtain.

This paper takes a different approach. Rather than beginning with a master equation describ-
ing the probability of all processes happening in a unit of time, we make several assumptions from
which we can reformulate the problem. Although these assumptions limit the applicability of the
theory, when they apply, the problems are much easier to solve. The assumptions are:

e The system we are interested in is a composite system made out of constituent parts. In the
nightclub example, the system is made up of three physical regions: Outside the front door,
the interior of the club, and outside the back door. The decomposition of a larger system into
smaller interacting parts is only meaningful for us if there is a separation of time scales. This
means that the charge inside the constituent parts changes on a slower time scale than the
fluctuations at the boundaries. In the nightclub example, this simply means that the average
time a person spends in the club will be much longer than the typical time needed to enter the
door.

» Taken alone, the parts of the composite system have a finite humber of simple properties or
parameters. The only property of the nightclub that was relevant for the problem was the total
number of people in it at any given time. The important element of the line out in front is that
it never runs out. All other details are irrelevant.

« In the limit where all parts of the network are very lar@g® that the elementary transport
processes do not affect themselves in the shor}, rilve transport probability distributions
between elements are known. In the nightclub example, the probability of g&itjpepple
through the front door aftertime stepggiven a constant, large number of people inside
easy to find, because we have assumed that the elementary proballtigs not change
from trial to trial. The transport probability distribution is simply the binomial distribution
where the probabilityp is a function of the(approximately unchanginghumber of people
inside. The back door distribution is obtained in the same way.

e There are conservation laws that govern the probabilistic processes. No matter what prob-
ability distributions we have, there are certain rules that must be obeyed. The net number of
people that enter, stay, and leave the club must be a constant. This means that the time rate
of change of the club’s occupancy is given by the people-current in minus the people-current
out. The people in the line outside are a special case. There is in principle always a replace-
ment, so moving one person inside the club does not affect the properties of the line.

Now, the strategy is to use this information as the starting point to find transport statistics for
the combined interacting system. The main result derived is a path integral expression for the
conditional probability(taking conservation laws into accourfor starting and ending with a
given amount of charge at each location after some time has passed. From this conditional prob-
ability, specific quantities such as transport statistics through the system, fluctuation statistics of
charge at a particular location and the like may be found.

One primary application of this formalism is that of full counting statis(EE€S,>® the
motivation for why it was developed in the first placECS describes the fluctuations of currents
in electrical conductors. It gives the distribution of the probability that a certain number of
electrons pass a conductor in a certain amount of time. Mean current flow and shotcosise
spond to the first and second cumulant of this distribution. The full distributlefined by all
cumulant$ provides a full characterization of the transport properties of an electrical conductor in
the long time limit. In the past, FCS was mainly addressed with quantum mechanical tools such as
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the scattering theoPy®° of coherent conductors, the circuit theory based on Keldysh Green
functions’®>** or the nonlinearc model** However, a number of works realized that for semi-
classical systems with a large number of conductance channels, shot noise may be calculated
without accounting for the phase coherence of the eledtrdfi These works treat the basic
sources of noise quantum mechanically, but calculate the spread of the noise throughout the
conductor classically. For specific conductors like diffusive wires and chaotic cavities, this idea
has been extended to the calculation of third and fourth cumulants via the cascade pfiitiple

and to the full generating function of FC$- % In the present work, we consider an abstract
model instead of any particular example and develop the mathematical foundations of the pro-
posed semi-classical procedure to obtain FCS. We introduce and investigate networks of elements
with known transport statistics and show how the FCS of the entire network can be constructed
systematically.

The formalism we present is related to a different approach in nonequilibrium statistical
physics called the Doi—Peliti techniqﬁ‘é‘.l’he idea is that once the basic master equation govern-
ing the time evolution of probability distributions is given, it may be interpreted as a Schrédinger
equation which may be cast into a second-quantized language. This quantum problem is then
converted into a quantum mechanical path inte¢uften obeying bosonic or fermionic statistics
from which one may take the continuum limit and use a field theory renormalization group
approach with diagrammatic perturbation expan§f’o‘ﬁhis approach is useful in many situations
far from equilibrium and has several parallels to our approach. It has been pointed out that this
technique is in some sense the classical limit of the quantum mechanical Keldysh forAtatiem,
same tool used in the past to calculate FCS, so this gives another connection with the subject
matter we are concerned with.

There are several advantages of our approach. First, we skip the master equation step. If the
probability distributions of the connector fluctuations are given, we may immediately construct
network distributions. Second, from a computational view, our formulation of the problem is much
simpler than starting from first principles for situations where the ingredients we need are avail-
able, and results are much easier to obtain than beginning with the master equation alone. Thirdly,
our formulation also applies to situations where temporal transition probabilities may be large.
Finally, the formalism’s physical origin is clear, so the needed mathematical objects are well
motivated.

The rest of the paper is organized as follows. In Sec. I, we introduce and develop the general
theory. After reviewing elements of probability theory, we derive the stochastic path integral for a
network of nodes as well as explore the relationship to the master equation and Doi—Peliti for-
malism. In Sec. lll, the continuum limit is taken to derive a stochastic field theory and link our
formalism with the Langevin equation point of view. In Sec. IV, we develop diagrammatics rules
to calculate cumulants of the current distribution as well as current correlation functions for an
arbitrary network. Section V gives several applications of the theory to different physical situa-
tions. We solve the field theory for the mesoscopic wire and demonstrate universality in multiple
dimensions as well as present new results for the conditional occupation function and probability
distribution. We also consider the problem of charge fluctuation stati&ath instantaneous and
time-averageylin a mesoscopic chaotic cavity. Section VI contains our conclusions.

Il. GENERAL FORMALISM

Once we have the basic elements of our theding generalized charggsve must specify
some spatial structure that they move around on. As we noted in the introduction, the essential
structure needed to state the problem are simply points we refer to as nodes, joined by connectors.
This defines a networksee Fig. 1. The state of each node is described by ongeffectively
continuou$ chargeQa,27 andQ is the charge vector describing the charge state of the network.
The node’s state may be changed by transport: Flow of charges between nodes takes place via the
connectors carrying currenits; from nodea to nodeg. The variation of these charg&, is given

by
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(@, A‘f} {Q4, A%}

FIG. 1. An arbitrary network. Each node has charge and counting varigQles\,}. The nodes transfer charge via
currentsl .5 through the connectors. The absorbed counting fielg are constants by definition of the absorbed charges
Q2 (see text Each node may have an arbitrary number of different charge sp@;egQi,Qi, QL

Qult+At) = Qu() = X Qup, (1)
B

where the transmitted charg€y,s(t)=/ é‘dt’laﬂ(tﬂ’) are distributed according tB,4(Q,4(1)).
The fact that the probabilitieB,4(t) also depend on the charg@st) is one source of the difficulty
of the problem.

Assuming that the probability distributior,; (which depend parametrically on the state of
nodesa and ) of the transmitted charge3,; are known, we seek the time evolved probability
distributionI'(Q,t) of the set of charge® for a given initial distribution'(Q, 0). In other words,
one has to find the conditional probabilitgvhich we refer to as the evolution operator
U(Q,Q’,t) such that

Q1) =fdQ’U(Q,Q’,t)F(Q',0)- (2)

We assume that there is a separation of time scalesyc, between the correlation time of current
fluctuations,ry, and the slow relaxation time of charges in the nodgsAs we will show in the

next section, this separation of time scales allows us to derive a stochastic path integral represen-
tation for the evolution operator,

U(Qf!Qilt) = f DQDA eXp{S(QaA)}: (3a)
t .
SQ,A) :f dt'[—iA Q+(1/2 2 Hag(Q Ao = Np) |, (3b)
0 af

where the vectoA has components,: Node variables conjugated to tig, that impose charge
conservation in the network.

In the following, we define the functiorts,; as the generating functions of the fast currents
between nodes and 8. On the time scalé\t> r,, the currents through isolated connectors are
Markovian, so that all cumulantérreducible correlators which are denoted by double angle
brackets of the transmitted charg&(Q,s)") are linear inAt. Following the standard notation in

mesoscopic physiéS,we define the current cumular(t(iTaﬁ)”» as the coefficients in

((Qup)™ = AK((Tp)"), (4)

where the tilde symbol has been introduced to distinguish the bare currents of each caofthector
sources of noisefrom the physical currentk,; flowing through that same connector when it is
placed into the network. Then the generatdrsg; are defined via the equation
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~ o PHap(Q )
(o)™ = (i 0hep) Aaﬂzo, (5)

and thus contain complete information about the statistics of the noise sources,lfeventu-

ally to be replaced with with\,—\z in Eq. (3)] is the generating variable for the currépg. The

notion of current cumulants is useful because they are the time independent objects, and thus have
time independent generators, E§). The generatorsi 5(Q,\,z) depend in general on the full
vectorQ and not just on the generalized charges of the neighboring m@gdesdQg. This may

serve to incorporate long range interactions between distant nodes.

The charge,,; transferred through the connectgeharacterized by Eqg4) and(5)] may be
discrete. However, the charge in the nodgsis treated as an effectively continuous variable in
Egs.(1)—(3). This is justified if many charges in the node participate in transport. Formally, this
limit allows a saddle-point evaluation of the propagat®s).

A. Derivation of the path integral

To derive the path integral E@3), we follow the usual proceduféand first discretize time,
t=nAt to derive an expression fd# that is valid for propagation over one time st&p Because
of the separation of time scaleg<< 7, we can consideAt as an intermediate time scale,

7o < At < TC- (6)

The left inequality,7y< At, implies that the transmitted charg®g,; are Markoviar: This means
that charges transmitted in separate time intervals are uncorrelated with each other. While it is not
necessary to specify the source of the current correlation in the general formulation, it is worth
noting two examples. In a mesoscopic point contact, the correlationsjrhas the interpretation
of the time taken by an electron wavepacket to pass the point contact. In chemical dynamics, it
could be the time taken for a long molecule in solution to traverse a filter.

In a time At, the probability that charg®,, is transmitted between nodesand 8 can be
written as the Fourier transform of the exponential of a generating fungfjgn

dn, .
Paﬁ(QaﬁlAt) = f ETEGXF{_ I)\aBQa,B + Saﬁ()\aﬁ)}' (7)
The definition of the cumulant of transmitted charge is

my = TSuglhag)
(Qup= T s

The Markovian assumption implies that the probability of transmitting ch@ggin time At
followed by chargeQ(’w in time At’ through any connector is given by the product of independent
probability distributions. This implies that the probability of transmitting cha@gg in time At
+At’ may be calculated by finding all ways of independently transferring chaggén the first
step and}aﬁ—Q;ﬁ in the second step,

(8)

Nog=0

P(Qup At +At') = f dQ.sP(Qup ~ Qup At)P(Q, 5 Ab), 9)

which takes the form of a convolution of probabilities. Applying a Fourier transform to both sides
of Eq. (9) with argument ., decouples the convolution into a product of the two Fourier trans-
formed distributions. EquatiofV) implies S,s(At+At", N, 5) =S,(At, N 5) +S,5(A", N ). It then
immediately follows that the generating function must be linear in time. Therefore, a time inde-
pendentd,; may be introducedS,;=At H,z. The linear dependence 8f; on time implies that

all charge cumulant&3) will be proportional to time. Therefore, we define the time independent
current cumulants, Eq5).
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Different connectors are clearly uncorrelated Adr< 7, which indicates that the total prob-
ability distribution of transmitted charges is a product of the independent probabilities in each
connector’

Pl{Qugt] = IT PuplQup At (10
a>f
Thus far, the analysis is only valid for times much smaller tharor this case, the charges in the
nodes will only slightly change. Since we wish to consider longer times, we need to take into
account the fact that charge transfer between different nodes will be correlated as charge piles up
inside the nodes. This may be accounted for by imposing charge conservati¢h Bqring the
time interval with a delta function,

d\
5<QQ—Q;—2BQQ,;> - f ﬁexp[—ika{Qa—Q;—zﬁQw”- (11)

Here,Q, is the charge in the node before the time interval wiijgis the charge accumulated in
the node after the time interval is over. In E@1), A, (referred to as @ounting variablg plays
the role of a Lagrange multiplier. The propagator is obtained by multiplying the congttajraind
the independent probability distributigt0). Representing the probabilities in their Fourier form
(7) then yields

~ d d
U(QaerQaﬂaAt):HfﬂH MGXFXS),

2m gl 2w
S=-iy, xa(Qa— Q-> Qaﬁ) + 3 [ M gQup + AtH4(Q' N ). (12)
o ﬁ a>ﬁ

The full propagatotd(Q,Q’,Q,z, At) still keeps track of each individual connector contribution
Q.- We now integrate out the fast fluctuations to obtain the dynamics of the slow variables. This
may be done by using the identity, \,2z Q=2 >\ oQapt N sQps) and Q,z=-Qp,. The
integration overQ,,; gives a delta function of argument,;—(\,—\p), so that thex 4 integrals

may be trivially done. We obtain

v a=I1 %exp{— I3 0@, Q)+ ALS Hy(@ - xﬁ)}. 19
@ a a>f

This is the general result for the one step propagator. If any two nodes are unconhggtésl,
Zero.

An important comment is in order: Becaudg, changes slightly over the time period, which
in turn affects the probability of transmitting charge through the contacts, it is not clear at what
part of the time stepH,,; should be evaluated. This ambiguity exists because our theory is not
microscopic. Rather, it takes the microscopic noise generators as an input. This ambiguity gives
the freedom of stochastic quantizati:fjlnThe same problem also occurs in quantum mechanical
path integrals, and its source there is an ambiguity in operator oroaér/nugwe are interested in
the large transporting charge limig>1, and evaluate the integrals in leading order saddle-point
approximation, this ambiguity will not affect the resuftor calculations beyond the large trans-
porting charge limit, the canonical variabl@sand A need to be properly ordered, which can only
be done with a microscopic theory. For example, the master equation discretized in time as
discussed in Sec. Il D requires the placemeniobperators in front ofQ operators, since the
generating function#i ,; of the transition probabilities depend on the state of the system at the
beginning of the time period.

To extend the propagat¢t3) to longer timeg=nAt, we use the composition property of the
evolution operatofalso known as the Chapman—Kolmogorov equébio‘ﬁhis requires separate
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{Q,} integrals at each time step, so that fiotime steps there will ba—1 integrals oveQ, while
each of then one-step propagators comes with its otrintegral, A={\,}. Inserting our expres-
sion for theAt step propagator Eq13), we find

n-1 n-1
U(Q+ Qi t) :J dAoI1 | dQ.dA, exp[E —iAg- (Que1— Qp +AtH(Q Ay |, (148
k=1 k=0
with
H(QuAW = 2 Hogll Quii k= Mgl (14b)

a>f

where we have introduced the notatiat@, =11, dQ, anddA,=II(d\, /27). We are now in a

position to take the continuous time limit. WritinQ,,,—Qx=AtQ, which is valid because the
charge in any node changes only slightly over the time saaleéhe action of this discrete path
integral has the forn8=At=}_; S, which goes over into a time integral in the continuous limit.
Using the standard path integral notatifPQDA = dAOHQ;}f dQ,dA,, and invoking the sym-

metry H,s(\,—Ng)=Hpg,(Ag—\,) we recover Eq(3). The only explicit constraint on the path
integral comes with the charge configurations at the start and fiQisaind Q. We also note that

H.; depends on any external parameters such as voltages or chemical potentials driving the charge
Q.

In the simplest case of one charge and counting variable, the form of the path integral is the
same as théEuclidian timg path integral representation of a quantum mechanical propagator in
phase space with position coordin&eand momentum coordinate® The differences with the
quantum version are that the propagator evolves probability distributions, not amplifiches
larly to Ref. 25, as well as the fact that the “Hamiltoniaii=(1/2)Z ,5H,5(Q,\,—\p) is not
really a Hamiltonian, but rather a current cumulant generating function and, therefore, is not
Hermitian in general. Even so, because of the similarity we shall refétr & the Hamiltonian
from now on.

B. Absorbed charges, boundary conditions, and correlation functions

A useful special case occurs when one has absorbed charges. These are charges that vanish
into (or are injected fromabsorbing nodes without altering the system dynamics. In mesoscopics,
for example, the absorbing nodes are metallic reservoirs. Formally, we divide the charges into
those that are conserved and those that are absafef®,Q?, where the subset of absorbed
chargesQ?={Q?} does not appear iRl,z. We do the same for the corresponding counting vari-
ables:A={A°, A%. BecauseH ,z does not depend o@?, these charges may be integrated out by
integrating the action by parts,

t t
if dt'Aa-Qa:—if dt'Q* - A%+i(A%-QF - A?-QP), (15)

0 0

and then functionally integrating ov€)? to obtain 5(A?), whered is a functional delta function.
This immediately constrains th&? to be constants of motion so the functional integration o\ér
becomes a normal integratioPA®— dA?2, The absorbed kinetic terms in the action may then be
integrated to obtain

U(Qf!int):fdAaf DQCDACGXF{SQ,A)}, (163)

t .
SQ.A) = f dt'[—iA°-QC+(1/2)EHaﬁ<xa—xﬁ)]—iAa-<Q?—Q?>. (16b)
0 apB
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Often one is interested in the probability to transmit some amount of charge through each of
the absorbing nodes. By applying a Fourier transform to(E8g with respect tdQ?(t) —Q?(0) we
remove the last term in Eq16b) and obtain the path integral representation for the characteristic
function Z which generates current moments at every absorbing node

Z(A® = J DQ DA exp{S(Q,A)}, (17a
t .
S(Q,A):f dt’[—iAc-Q°+(1/2)E Has(Na = Np) |- (17b)
0 ap

Note that the counting variable$® enter the actioiil7b) only as a set of constant parameters. The
initial condition in the path integrall?7) is given by the initial charge stat€3®(0). There is a
choice of the final condition: By fixing the fin&°(t) one obtains the distribution of the conserved
charge subject to this constraint, while by fixiAg(t) the corresponding characteristic function is
obtained. The choice oAS(t)=0 in Eq. (17) gives the characteristic function of the absorbed
charge under the condition that the conserved charge is not being monitored, i.e., the final charge
state is integrated over. Therefore,d2rbecomes the generator of the FCS, defining the charge
cumulants at the absorbing node,

Minz
(@IN)"] pazg

([QAD - QO] = (18
In the long time limit, this quantity is proportional to time, independent of the details of the
boundary conditions.

Alternatively, in the short time limit one may calculate irreducible correlation functions of
absorbed and conserved current fluctuatibes). These correlation functions can be obtained by
extending the time integral in3b) to infinity, introducing sourcéé in the action, S—S
+i [dt x(t)-1(t), and applying functional derivatives with respecitdRepeating the steps leading
to Egs.(17), we find that variables., in the Hamiltonian in Eq(17b) have to be shifted\,

— N, Xxo Then, the irreducible current correlation function is given by

8" In Z[x]
&Xal(tl) Tt &Xan(tn) X:O.

With these correlation functions, one may calculate, for example, the frequency dependence of
current cumulant&®

oyt =1 () = (19

C. The saddle point approximation

If the Hamiltonian has some dimensionless large prefactor, then the path in@®gnahy be
evaluated using the saddle point approximation, which is justified below. At the saddle point,
(where the first variation of the action vanishese can write equations of motion analogous to
the Hamiltonian equations of classical mechanics:

d
dA°

J
dQ°
whereH(Q®,A)=(1/22 ,5H,5(Q% N,—\p). There may be many saddle point solutions in gen-
eral, and one has to sum over all of them. Equati®@® are solved subject to the temporal
boundary conditions and generally describe the relaxation of the conserved charges from the initial
state to a stationary sta{éc,xc} on a time scale given by, the dynamical time scale of the

nodes. These stationary coordinates are functions of any external parameters as welt@as-the
stan) absorbed counting variabl@gs®. In the saddle point approximation, the action takes the form

H(Q%A), iAC=-

iQ°= H(Q%A), (20)
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S=SS‘E,+S|UC.7 The termS;, is the contribution to the action from the solution of the E@0),

which describes the evolution of the system from the initial to the final state. The Sggm
describes fluctuations around the saddle point and is suppressed compared to the saddle-point
contribution, if the Hamiltonian has a large prefactor analogy to thei-expansion of quantum
mechanics Physically, the validity condition for the saddle point approximation is that there
should be manytransporting charge carriers in the nodes. For times longer than the charge
relaxation time of the node, the dominant contribution is from the stationary state only, where the
saddle-point part of the action is simply linear in time:

SHQA)=tH(QA), t> . (21)

The linear time dependence of E@1) indicates that the dynamics are Markovian on a long time
scale. It is the fact that the contributi@y, emerges in a dominant way which makes the approach
given here a powerful tool to analyze the counting statistics of transmitted charge.

We now discuss the large parameter that justifies the saddle point approximation. The bound-
ary conditions on the charge in the absorbing nodes fidimensionlesscharge scale of the
system,y. All charges in the network are scaled accordin@y;~ yQ. We make the assumption
that there is a one parameter scaling of the Hamiltorithn; yH. The time is also scaled by,
the time scale of charge relaxation in the nodes. The dimensionless action iS:npﬂgfcdt’

X (-iQN+7cH). The saddle point action is proportional# 7, while the fluctuation contribution

will be of ordert/ 7. We note that the parameteris related to(though not necessarily the same

as the separation of time scaleg;/ 7, needed to derive the path integral. For the mesoscopic
conductors considered in the example section V B of this paper, the charge scale is set by the
maximum number of semiclassical states on the cavity involved in transpofuNg> 1, the

bias times the density of states at the Fermi level. On the other hand, for the chaotic cavity,
7cl 9= v/ (G_+Gg), WwhereG, g>1 are the dimensionless conductances of the left and right point
contact.

D. Relation to the master equation and Doi—Peliti technique

The evolution operatod(Q,Q’,t) may be interpreted as a Green function of a differential
equation which determines the propagation in time of an initial probability distribditi@). In
the theory of stochastic processes, such a differential equation is called a master equation. A
natural question that arises is the relationship of the formalism presented here to other approaches
to stochastic problems.

The most general type of Markovian master equation for discrete states and discrete time is of
the form

T(tien) = 20 Pon(tirs, ) Tin(8), (22

wherel"(t,) is the probability to be in state at timet, andP,,, is the transition probability from
statem to staten. The state is described by a vector(n4, ... ,ny) whose components are the
charges, of each nodex. The Markovian assumption implies thgt, —t,=At is greater than the
correlation time,r,. If we further assume that the probability to make a transition to another state
is small,P,,,<<1 for n#m, so that the transition probability is only linear it, a transition rate
W,m=Pnm/ At may be defined. It then follows that we may write a differential master equation,

T(0) = 2 [Wanl m(®) = Wep o (1)]. (23)
m
Equation(23) is the starting point for the Doi—Peliti techniqﬁﬂewhere one formally maps the
space of physical states to the Fock space of sta}es{a{)“l~ . -(aL)”N|0), wheren is the number

of charges. The entire state of the system is expressed by a \W¢toE, [',|n) which weights the
states|n) with their probabilitiesI',. Thus, the master equatiqi23) may be interpreted as a
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many-body Schrodinger equation where the rakés, are incorporated into a Hamiltonian in a
second-quantized form. One may then write a coherent-state path integral over the variabbtks

a' for this many-body quantum system and perform perturbation expansions along with the renor-
malization group?.5 This procedure eventually involves taking the continuum limit so the discrete
charge states become continuous.

Let us now consider how our formalism is related to the master equation or the Doi—Peliti
technique. According to the results of Sec. Il, our stochastic path integral(3Egolves the
continuum variable version of E¢22) with the transition probabilities given by the one step
propagatorU(Q,Q’,At). In general, the transition probabilities are neither small nor linear in
time for At>7,. It is instructive nevertheless to consider the special case of processes where
Hry<1, when we can expand the one-step propagdtdyrto first order inAt,

U(Q,Q',At) = 8(Q-Q’) + AtJ dAeAQRQRIH(Q’,A). (24)

Defining the Fourier transform of the generating functioﬂt&Q,Q’), the differential equation
governing the evolution of a probability distribution of chard&®) is then

I(Q,t)= J dQ'H(Q,Q")I(Q",1). (25)

Comparison with the continuous version of the master equ#fidy

rQ.= f dQ'[W(Q,Q)I'(Q",t) ~W(Q",Q)'(Q,1)], (26)

indicates that is related tow. The Hamiltonian may be expressed in terms of the transition
kernef* as,

H(Q',A) = J dQ[ Q" - 1]W(Q,Q"), (27)

where the normalization of probability is expressedHi@’,0)=0. Equation(27) is an important
result, because it allows the conversion of the master equ@®)into the stochastic path integral
3.

We would like to stress that our formalism is not simply equivalent to the differential master
equation(26) (and, therefore, the Doi—Peliti techniguéout that it allows the treatment of a
complementary class of problems. Our formalism assumes effectively continuous charge, and thus
cannot resolve effects due to the discreteness of charge on the nodes. Such effects are present in
the master equatiof23). In contrast, the differential master equation assumptibiy,<1 (which
simply states that transition probabilities are small in the time interyals not required. Our
formalism is especially important when this is not the case, ey~ 1.

This is illustrated by the simple example from mesoscopics of two metallic reservoirs con-
nected by a single electron barrier with hopping probabgignd biasA x at zero temperature. For
a time interval At larger than the correlation timey=%/Aun (the time scale for an electron
wavepacket to transverse the baryiext/ 7y electrons approach the barrier and either are trans-
mitted or reflected. Mathematically, this is a classical binomial process with the generator

S=(At/7p)In[1 + p(e®* - 1)]. (29)

As this action is the starting point of many mesoscopic implementations of the formalism, it is an
important example. Since the action is proportional to the large parathetey> 1, for p~ 1 the
expansion of ex®) to first order inAt is strictly forbidden, effectively not allowing a first order
differential master equation. Only in the limit<1, (i.e., when Eq(28) describes a Poissonian
proces$ may the logarithm be expanded to first order. This suggests tha2Bqdescribes the
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FIG. 2. A one-dimensional lattice of nodes connected on both ends to absorbing reservoirs. This situation could represent
a series of mesoscopic chaotic cavities connected by quantum point contacts.

slow dynamics of systems whose fast transitions are Poissonian in nature. A more general type of
dynamics such as the binomial distribution may only be found using the continuous charge state
master equation in discrete tini22).

lll. THE FIELD THEORY

From the stochastic network, Fig. 1, it is straightforward to go to spatially continuous systems
as the spacing between the nodes is taken to zero. The goal is to introduce a Hamiltonian func-
tional h(p,\) whose arguments are the charge densind the counting field functions that are
themselves functions of space and time. We may then regla®=, ;H, s— fdzh(p,\). Our
description is local, so in the model each node is only connected to its nearest neighbors. We first
derive the one-dimensional field theory with one charge species in detail, and then generalize to
multiple dimensions and charge species.

Consider a series of identical, equidistant nodes separated by a didanteis nodal chain
could represent a chain of chaotic cavities, Fig. 2, in a mesoscopic cSntédthe sum overx
and B8 becomes a sum over each node in space connected to its neighbors. The action for this
arrangement is

t .
5= f A0S (- O + H(Qu Quthe = Au )}, (29
0 a

where for simplicity we have chosen real counting variabies,— \,. The imaginary counting
variables will be restored at the end of the section. The only constraint madé isnthat
probability is conservedd(\,—\,-1)=0 for A,=\,_1. We now derive a lattice field theory by
formally expandingH in A,—\,-, andQ,—Q,-1. Only differences of the counting variables will
appear in the series expansion, while we must keep th&)dépendence of the Hamiltonian. If
there areN>1 nodes in the lattice, for fixed boundary conditions the difference between adjacent
variables\,—\,-; andQ,—Q,-; will be of order 1N, and therefore, provides a good expansion
parameter. The expansion of the Hamilton{a8) to second order in the difference variables gives

JH 1 #H #PH
H=z—O\, - A, )+ =—A\, =N, )2+ ———(Q, = Q. )N, = Npyet), 30
(9)\&( a al) 2(9)\2( a al) aQaa)\a(Qa Qa 1)( a al) ( )

a

where the expansion coefficients are evaluated &\ ,; and Q,=Q,-; and are functions of
Q,-1- Terms involving only differences of,—-Q,_; are zero becauskE(\,—\,1)=0 for A,
=\,-1. All terms in Eq.(30) need explanation. First, the expressiti/ J\ , is the local current at
zero biagbecause the charges in adjacent nodes are egbalh will usually be zero. There may
be circumstances where this term should be ﬁébut we do not consider them here. The term
#H19Q,o\,=-G(Q,-,) is the linear response of the current to a charge difference. Hénise,
the generalized conductaritef the connector between nodesand a—1. ﬁZH/ﬁ)\i:C(Qa_l) is
the current noise through the same connector beddusethe generator of current cumulants.

We are now in a position to take the continuum limit by replacing the node iadeith a
coordinatez, introducing the field€(z),\(z), and making the expansions
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Ny = Nyog — N AZ+ (12N (A2)% + O(A2)3, (314

Qu~ Qa1 — Q'Az+(1/2)Q"(A2)*+ O(A2)°. (31b)

The action may now be written in terms of intensive fields by scaling akhay

H—h(p,NAz, Q. — p(2Az, G,(A2)?—D(p), C,Az— F(p), (32

and taking the limitz ,H— [dzhp,\). One may check that expanding the Hamiltonian to higher
than second order itz will result in terms suppressed by powers &f/L and consequently
vanish asAz— 0. This scaling argument for the field theory is analogous to Van Kampen'’s size
expansiorf’.9 Though the lattice spacingz does not appear in the continuum limit, it provides a
physical cutoff for any ultra-violet divergences that might appear in a loop expansion.

These considerations leave the one-dimensional action as

t L
s:—J dt’J dANp+Dp'\' = 3F(\)]. (33)
0 0

HereD is the local diffusion constant arkdis the local noise density which are discussed in detail
below. It is very important that these two functionBIsF are all that is needed to calculate current
statistics. Classical field equations may be obtained by taking functional derivatives of the action
with respect to the charge and counting fieldS! 5p(z) = 6S/ 6\(z) =0 to obtain the equations of
motion,

. 16F )
N==>—(\")?-D\", p=[-F\" +Dp']. (39
2 6p
From the charge equation, one can see immediately that the term inside the derivative may be
interpreted as a current density so that local charge conservation is guaranteed. We have to solve
these coupled differential equations subject to the boundary conditions

p(t,0)=p (1), p(t,.L)=prl), AtO)=A.(1), A(tL)=Ng(), (35)

where p, (1), pr(t), N\ (1), and Ag(t) are arbitrary time dependent functions. Functigp&) and

pr(t) are the charge densities at the far left and right end of the system which may be externally
controlled. Functiong, (t) and\g(t) are the counting variables of the absorbed charges at the far
left and right end which count the current that passes them.

Once Eqs(34) are solved subject to the boundary conditig85), the solutionsp(z,t) and
\(z,t) should be substituted back into the acti@8) and integrated over time and space. The
resulting function,S;{ p (1), pr(t) , A (1), Ag(1),t,L] is the generating function for time-dependent
cumulants of the current distribution. Often, the relevant experimental quantities are the stationary
cumulants. These are given by neglecting the time dependence, finding static sofutiar),
and imposing static boundary conditions. Similarly to Sec. Il D, we can also introduce sources
Jdtdzy(z,t)p(z,t) and calculate density correlation functions.

To estimate the contribution of the fluctuations to the action, it is useful to define dimension-
less variables. The boundary conditions and pgr provide the charge density scabg in the
problem, so we defing(z) =p,f(z), wheref ~ 1 is an occupation. We furthermore rescale Lz,
andt— 7pt, where,=L?/D is the diffusion time, thus obtaining

t 1
- F
S:—Lpof dt’j dz’{)\f+f')\’— (N)?]. (36)
0 0 2Dpg

We assume that the combinatiéiiDpg is of order 1. From Eq(36), the dimensionless large
parameter igy=pgL>1, i.e., the number of transporting charge carriers. As in Sec. Il C, the saddle
point contribution is of ordent/ 7, while the fluctuation contribution is of ordef 7.
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Repeating this derivation in multiple dimensions wiNhcharge specieg={p;(r)} and count-
ing fields A={\;(r)}, i=1,... N yields the action

t
S:—f dt'f dr[Ap+ VADVp-(1/2VAFVA], (37
0 Q

where tensor notation is used and we have introdUE;atdﬁkiaNh and Dij:—(?piﬁkjh as general
matrix functionals of the field vectgr and coordinate which should be interpreted as noise and
diffusion matrices. If the medium is isotropic, then the vector gradients simply form a dot product.
It should be emphasized that the vectors appearing are vectors of different species of charge fields,
as all node delimitation has been accounted for in the spatial integration. The functional integral
now runs over all field configurations that obey the imposed boundary conditions at the surface
/. Classical field equations may be formally obtained by taking functional derivatives of the
action with respect to the charge and counting fields as in the one-dimengidnatase.

As in any field theory, symmetries of the action play an important role because they lead to
conserved quantities. We first note that the Hamiltotign Vp, VA) is a functional ofVA alone
with no A dependence. This symmetry is analogous to gauge invariance, and leads to the equation
of motion

p+V -j=0, j=—-DVp+FVA, (38)

which can be interpreted as conservation of the conditional curréihie next symmetry is related

to the invariance under a shift in the space and time coordigatest}. This symmetry leads to
equations analogous to the conservation of the local energy/momentum“féﬂ@ndo not ex-
plicitly give this quantity because it is rather cumbersome in the general case. However, for the
stationary limit(wherep and\ vanish and for symmetric diffusion and noise tensors, the one
charge species conservation law is relatively simple and is given by

2 Volmn=0, Tymn=Jm(VeM) - (Vnp)(|5 V' N)m— hémn. (39
m

For the special case of a one-dimensional geometry, the Hamiltonian itself is the conserved
quantity (see Sec. V A

In the continuum limit, all terms of higher order i are suppressed so that the action is
quadratic in theA variables. This fact may be viewed as a consequence of the central limit
theorem and confirms the observation made by Nagaev that local noise in the mesoscopic diffusive
wire (see Sec. V Ais Gaussiar? To further clarify the physical meaning &f andF, and also to
make connection with previous work,we restore the complex variable§,—iA, and make a
Hubbard-Stratronovich transformation by introducing an auxiliary vector field

expl— (1/2) V AF V A} = (detF) /2 f Dy expl— (1/2vF v +ivV A}. (40)
We may then integrate out th variables, taking account of the boundary terms to obtain,

t t
U=exp{ f dt’ f ds-(iAaJ)} f DpDvdp+ V -J)(oletﬁ)-lfzexp{—l f dt’ J dr'yﬁ-lu},
0 9} 2 0 QO

(41)

where thes above is a functional delta function, imposing the Langevin equation

p+V -J=0, (429
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J=—I5Vp+v, (42b)

with a current noise source whose correlatdt is given by

(W, Hw(r' 1) = 8t =t)8r =1 )F(p). (429
J may be interpreted as the physical current denpityt to be confused with the conditional

current density(38)] so that local current conservation is guaranteed, ant(idrkl@)‘l’2 serves to
normalize thev probability distribution. The role of the boundary term is to count the curdent
flowing out of the boundary with the counting variab{é, which serves as a Lagrange multiplier.
This formula gives an immediate translation between the Langevin approach and full counting
statistics, a connection not previously known. The algorithm is as follows:

(1) Given a Langevin equation of the for(d2), write the average of the boundary term with
sourceA? as a path integradl) over noise and density fiel 8;

(2) introduce an auxiliary field\ that takes on the valu&? at the boundaries and represents the
delta function in Eq(41) imposing current conservatiqd2a in Fourier form;

(3) integrate out the Gaussian noise to obtain an action of the form of3zy.

(4) find where the first variation of the action is zero and solve the equations of motion subject
to the boundary conditions;

(5) insert the solutions back into the action, and do the space and time integrals. The answer is
the current cumulant generating function.

IV. PERTURBATION THEORY

We have shown in Sec. Il C that a large number of participating elementary charges justifies
the saddle point approximation for the generator of counting statistics. While the generator may
sometimes be found in closed fornip general, it has no compact expression and the cumulants
should be found separately at every order. This may be done by expa®di@g\, x) as a series
in y and solving the saddle point equations to a given ordgrdirectly. However, there is another
approach for evaluating the higher cumulants, the cascade diagrammatics representing higher-
order cumulants in terms of the lower ones. It has been introduced by Nagaev in the context of
mesoscopic charge statistics in the diffusive Wirand later extended to the chaotic cavftyut
without proof. The basic idea is that lower order cumulants mix in to yield corrections to the bare
fluctuations of higher order cumulants. This method was used successfully in Ref. 43 to explain
the recent experiment of Ref. 44. In this section, we demonstrate that these rules follow naturally
from the stochastic path integral in the same way as Feynman diagrams follow from the quantum
mechanical functional integral. In Sec. IV C we present anogsienplef) method for computing
cumulants based completely on differential operators obtained from the Hamiltonian equations of
motion. In Sec. IV D we generalize the cascade diagrammatics to an arbitrary network, and to the
case of time-dependent correlators.

A. The principle of minimal correlations

To motivate the cascade diagrammatics, we refer to a specific physical Sg&terhe inset of
Fig. 8), the mesoscopic chaotic cavitfor the purposes of this section, the cavity is a conserving
node carrying charg®), the electronic reservoirs correspond to the left and right are absorbing
nodes, and the two point contacts are the connectors described by Hamiltbipidhs (see Fig.
3). Although a detailed description of this system is given in Sec. V B, we would like to mention
that the mesoscopic cavity is described by an electron distribution funiGtishich is fluctuating
around its mean valud,. The actual electrical charge in the cavijyand the occupatiof are
related via the large parametgithroughQ=1(f-f,), wherey=AuNg> 1 (the density of states at
the Fermi energyNg times the biasAw) is the maximum possible number of electrons on the
cavity which contribute to the transpadee Sec. Il ¢
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FIG. 3. Network representing a chaotic cavity. The state of the internal node is described by the ¢arthbleharge on
the cavity. The statistics of the connectors are characterized by the two generating fuHgtions

The cascade approach builds on the principle of minimal correlations developed in Ref. 18:
The point contacts create bare no{§I9L2>>=&2HL/(0i)\L)2, and((TFf)):&ZHR/(ai)\R)Z with no cor-
reIation,((TJR»:O [see Eq.(5)]. However, for times longer than the average dwell time of
electrons in the cavity, the current conservation requirement imposes “minimal correlations” on
the fluctuations of the physical currents and Ir, which can be expressed in the form of the
Langevin equations,

IL=1,-GQ, Ir=Tr+GgrQ, (43)

WhereTL,R are now the sources of bare noi&, are the generalized conductances of the left and
right point contact, and is the fluctuating charge in the cavity. Current conservation of the
physical currentsl =Ig=1, can now be used to obtain

_ GRTL + GLTR _ TL _TR
G +Gg ' G +Gg’
Combining powers of andQ and averaging over the bare noise, we obtain the minimal correla-

tion result for arbitrary cumulant§QX')),,. In particular, using((TLNIR»:O, we find the second
cumulant of current <8

(44)

GH{(1.2) + GH{I 2
(G + GR)2 ,

where the subscripn denotes the minimal correlation result. We stress that the bare correlators

<(~IL2,R>> are fully determined by the average occupation funcfigof the cavity.

This example demonstrates that a simple redefinition of the current fluctuations makes it
straightforward to find the noise. Therefore, it came as a suf’f)rﬁbat the minimal correlation
approach is not sufficient to correctly obtain higher-order cumulants of current. The reason for the
failure of the minimal correlation approach has been found recently by Né&mém showed that
from the third order cumulant on, there are “cascade corrections” to the minimal correlation result,
which may be interpreted as “noise of noise.” For example, the third cumulant of current through
the mesoscopic cavi

(2 = (1P = (45)

€)= (13 + 3<<|Q>>ma%<<|2>>m, (46)

contains a contribution from fluctuations of the charge in the cavity that couples back into the
current fluctuations. The factor of 3 comes from the fact that there are 3 independent currents that
the charge fluctuation may be correlated with. For higher cumulants, there will be more cascade
corrections that may be represented in a diagrammatic torth

B. Derivation of diagrammatic rules

We now present a derivation of these diagrammatic rules for a single node attached between
two absorbing nodes. Generalizations to an arbitrary network will subsequently be given in Sec.
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IV D. As we have shown in Sec. Il C, the charge scale imposed by the boundary condjtions,
gives a dimensionless large parameter which justifies the saddle point approximation of the path
integral, so that fluctuations around the saddle point are suppressedybinlhe diagrammatic
language, we will show that loop diagrams are suppressed by the same fagtdhg/diagram-
matic approach given here is based on perturbation theory originally developed in quantum
mechanic$’

Consider the path integral expression of the generating function for the charge absorbed in the
left (L) and right(R) node:

t .
Z(XL!XR) = f DQD)\ exp{f dt,[_ IQ)\ + H(Q!)\IXL!XR)]}I (47)
0

whereH=H, (Q,A—x,) +HRr(Q, xg—\). The perturbation theory is formulated as follows. First,
the external counting variables are set to zegpr=xg=0. The HamiltonianH—H,(Q,\)
+Hg(Q,—-\) has a stationary saddle point located@g, A} that we wish to define as the origin of
coordinates. The probability distributions of transferred charge are normalized, so

BHLRQ M| ==0, On. (48)

In particular, doH (A\)|\=0=dgHr(M)[,20=0, and thereforeno=0. Next, d\H(\)|,=0=(I(Q))
-(Ig(Q))=0, sinceH, andHg are the generators of the left and right current respectively. There-
fore, Qq is fixed as the charge in the node such that left and right connector currents are equal on
average. The stability of the saddle point is guaranteed by the fact that the bare noise correlators,
<<~IE’R>>, are positive. The derivatives, doH| =—G_ , 9, dgHr=—GCg define the generalized conduc-
tance of each connector, where the current flows from left to right in both connectors.

The principle of minimal correlation plays an important role in the cascade diagrammatics. We
will show that this principle is equivalent to exploiting certain freedoms in the path integral in
order to postpone the cascade corrections to third and higher order cumulants. In the long-time
limit, t> 7 (where 1/c=G, +Gg is the relaxation rate of the charge in the npdhe absorbed
current is conservedg=I,. Therefore, the current through the node can be defined as weighted
average of the left and right connector current$l—-v)l, +vlg, wherev is an arbitrary constant.

The corresponding counting variabjgis introduced by substitutingg=vy and y, =(v—-1)x.
Consider now the second derivative

#H
dixdQ

We may set it to zero by fixing=G, /(G +Gg). This is equivalent to imposing conservation of
current fluctuations as in Eg44). If we consider further the derivative

#H
JINIQ

= (U - 1)G|_ + UGR. (49)
x=0

== (G_+Gp), (50)

x=0
we have the freedom to scaleto make the right hand side of E(O) equal to —1[this scaling
only alters they independent prefactor of E¢47)]. The Hamiltonian takes the new form

Gry + A\ G xy—\
H:HL<Q, RX )+HR<Q,—LX ) (51)
G, +Ggr G_+Ggr

We refer to these new variables as minimal correlation coordinates and will see that they simplify
the diagrammatic expansion.

Define 6Q(t) =Q(t) — Qg and S\ (t) =\ (t) —\,. If we expand the Hamiltonian in a power series
in x, 8Q, and 4\, the terms linear infQ and &\ vanish at the saddle point, as well as ti#)?
coefficient by EQ.(48) with n=2. As argued above, in the minimal correlation coordinates,
dindoH(Qg, o) =—1. With these transformations, we may split the actoas
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t t
s:so+f dvV(t), Sy=-i| dt o\ (1cdQ+ 8Q), (52)
0 0

whereV represents the rest of thé power series and will be treated perturbatively. It should be
emphasized tha¥ is a general nonlinear function @&\, so unlike most quantum examples, the
full momentum dependence must be kept.

In order to formulate the perturbation theory, we add two sourtes)dK to the action,S
— S+ [dt’/[J6Q+iK 8\ ], so that any average of a function of the variab#&} S\ may be evalu-
ated by taking functional derivatives with respect to the soudcend K, and then setting the
sources to zero. In particular, for the generating function we can write

t t
Z(X)=JDQD)\ exp{f dt’V(5Q,5)\,X)}exp{So+f dt’[J5Q+iK5}\]}
0

J,K=0

t
_exp{f dt'v 5" ﬁ,,\/)}JDQD)\ exp{so+fo dt [J&Q+|K5)\]} . (53
Using &,. from Eq.(52) we evaluate the integral ov€y and\ and obtain
! 5 &
Z(x) =ex dt'V{ —,—— x| (W(J,K) ) (54)
0 8) 8K 3K=0

where the functionalM(J,K) is

t
W(J,K):exp{ff dt’dt”J(t’)D(t’,t”)K(t”)}. (55
0

The operatoD=(rcd,+1)"* is the retarded propagator, and may be found explicitly by inverting
the kernel in frequency space,

dw e—lw(’[ t") i
D(t,t') = f o Sl =7c Ot -t)exd—- (t—t")/rc]. (56)
—0 C

It describes the relaxation of the char@ét) to the stationary stat, with the rate 1#-=G,
+Gg.

Expanding the exponential in E¢p4) and taking the > 7 limit, we arrive at the following
expression for theith current cumulant

t S S m
fo dt’ V<E,R,X>:| W(J,K)

According to the linked cluster expansi%by considering InZ(y) rather thanZ(y), we have
eliminated all disconnected terms. In order to compare with the results of Ref. 20, we introduce a
new notation by defining

(57)

oo 1
@my=tt D {
5( ) m=1 I X:J:KtZdO

Q) m = ks V(Qoho, x = 0). (58)

Here ((QN"Y), is the irreducible correlator expressed in terms of the noise sources, i.e., the
minimal correlation cumulant. In this notation, the expansiolvah a Taylor series of all vari-
ables takes the form:

Downloaded 10 Apr 2006 to 128.165.21.98. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



J. Math. Phys., Vol. 45, No. 11, November 2004 Fluctuation statistics in networks 4403

(<) )

FIG. 4. (a) An n-point current cumulanib) The vertex connectingexternal lines withj internalQ lines andk internal\
lines. (c) The propagator connectingto Q, equal to 1 in the stationary limitd) The vanishing vertexig(l) in minimal
correlation coordinates.

1
V(8Q,0N, ) =

2 QI QT ITiXT (59
Stk

Inserting the expansion E@59) into the formula for the current cumulants E&?7) gives the
formal solution to the problem. From the form\8f(J,K) andV, we can immediately read off the
diagrammatic rules with the internal lines given by the propagateés and the expansion
coefficientss((Q“'))m playing the role of vertices.

The following simplifications can be done before the rules are finally formulated. First, it is
straightforward to see that loop diagrams are suppressed by powers. dfideed, according to
our single-parameter scaling assumption, the adats#h has a large prefactoy, which can be
explicitly displayed,S— vy S, by rescaling the charg® — y Q. Then it becomes clear that each
propagatoD, represented by an internal line, comes with a factoyof Each vertex comes from
V and therefore has a factor ¢f If a diagram has internal lines E external legsy vertices and
L loops, it will come with a totaly power of V-I. Furthermore, Euler’s formula tells us thdt
+L-1=1. Therefore, diagrams with no loog4ree” diagram3s come with a power ofy, while
loop diagrams are suppressed by the number of logps, From now on we will concentrate on
tree-level diagrams, since they represent current cumulants at the level of the saddle-point ap-
proximation.

Second, in the long time limit> 7, each propagatd56) integrated over time gives 1. As a
result, since every vertex is connected to at least one other vertex, all the time integrals together
simply give a factor ot, and the time dependence cancels on the right hand side of th&HRg.

There are no time integrals in the vertices and the propagators just give a factor of 1 as in Ref. 20.
We are now able to formulate the diagrammatic rules for high-order current cumulants:

(1) Thenth order cumulan{(I™) is a connected-point function ofn external legs represented
by solid arrows[see Fig. 4a)];

(2) the external legs must be connected by using vertises Fig. 4b)] and linking internal
dashed lines to internal dashed arrows;

(3) the vertices&JQ«l'Q"))m are represented by a circle withexternal legsk internal outgoing
dashed lines, anginternal incoming dashed arrovjsee Fig. 4b)].

(4) Multiply each diagram by the number of inequivalent permutatidi®).

Formally, the vertices?&((l'Q"))m are the expansion coefficients {B9). However, it is im-
portant to note that they can also be easily evaluated by solving the Langevin eq@éBoasd
expressing the minimal correlation cumulai$QX)),, in terms of cumulants of the noise sources,
{117y and (%), Some vertices are zerePH/ dQP(Qg, No)|,=0=0 because of probability con-
servation, but other may or may not be zero depending on the physical system. Here, the advan-
tage of the minimal correlation coordinates is made clear: the vég&k),=0, and therefore any
diagram that contains this vertex is zdsee Fig. 4d)].
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(a)

FIG. 5. Tree level contributions to the third cumulant of transmitted current.

To obtain the overall prefactor of a diagram, one can write out all the numerical constants and
count the number of different ways of producing the same dia@?aﬁfnr example, there is thd
from the y derivatives, the 1rh! from the Taylor series o&', a binomial coefficient from expand-
ing V", and the 1¢j'k!l!) from every vertex withj +k+| attachments for the different lines. To
compensate these factors, we have to do the combinatorics of the number of equivalent terms:
Interchange the vertices, find the number of different placements of lines on a vertex, etc. Often,
the number of permutations of theexternal legs will cancel then!, and thej!k!l! number of
permutations of the internal legs attaching to the vertex will cancel that factor arising from the
Taylor expansion.

Rather than making this expansion, there is a simpler method which exploits these cancella-
tions given by counting the number of inequivalent permutations of the diag¥d®). The NIP
of the diagram is defined by how many ways the external legs of the diagram may be relabeled,
such that the diagram is not topologically equivalent under deformation of the external legs. In
other words, a diagram with external legs has! ways of labeling them. If this diagram with a
given labeling of the legs may be topologically deformed to give the diagram back with a different
labeling, these two sets of labelings are equivalent permutations. If we write out all the different
labelings the external legs can have, and cross out every labeling that is an equivalent permutation
of another, then the number of labelings that remain is the NIP. This number is most easily found
by dividing n! by the number of equivalent permutations of the diagram. The number of equiva-
lent permutations of the diagram is also called the symmetry factor of the diagram.

We illustrate these two approaches with the third cumulant, see Fig. 5. With the simplifications
discussed above, these diagrams may be written as

%) =((1%)m+ 3<<IQ>>mi<<I2>>m+ 3<<IQ>>fni2<<l>>m- (60)
Q aQ

Note that diagranic) does not appear in Ref. 20, because it happens to vanish for the chaotic
cavity [see also Eq(46)]. Referring to the formul&57), the contributions in Eq(60) are from
m=1,2,3respectively. Each diagram must have/aterm in the expansion. We first show the
combinatorial method to obtain the prefactor: Diagra@yrhas a factor of 1/3! from the number of
permutations of the variables, canceling the 3! from thederivatives. Diagrangb) has a factor
of 1/2! from the number of permutations of tlyevariables, a factor of 1/2! from the Taylor series
of the exponential, a factor of 2 from the binomial expansionVvéf and the 3! from they
derivatives, leaving a factor of 3. Diagrafo) has a factor of 1/3! from the Taylor series of the
exponential, a factor of 3 from the binomial expansion/dfa factor of 1/2! from the number of
permutations of théQ variables, a factor of 2 from the functional derivatives actinggrand the
3! from the y derivatives, leaving a factor of 3. The NIP is simpler to derive: We divide the
number of permutations of the external legs, by the number of equivalent permutation of the
elements of the diagram that leave it unchanged. The number of equivalent permutations of
diagrams(a,b,9 are 3!,2!,2!, leaving the overall factors 1, 3, 3.

The computation of these diagrammatic contributions is best understood by a little practice on
some examples. Consider three of the diagrams that contribute to the fourth cumulant drawn in
Fig. 6. The diagrams symbolically represents the combinations:
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FIG. 6. Three examples of diagrams contributing to the fourth cumulant.
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To figure out the numerical prefactors, we divide (4!is the number of external legby the
symmetry factor of the diagram. We first consider the symmetry fact@mof he upper two legs

may be flipped, and the lower two legs may be independently flipped where the dotted arrows join
without altering the topology of the diagram. Therefore, the symmetry factoxig 24, and the

NIP is 4!/4=6. Moving on to diagram(b), the three lower legs may be permuted amongst
themselves to give a symmetry factor 3!, and therefore, the NIP is 4!/3!=4. Finally, diggram
may be flipped about its center for a symmetry factor of 2, giving a NIP ¢2412.

C. Operator approach

In the stationary limitt> 7, the action takes the fon®=tH(Q,\, x) so that the evaluation of
the cumulant generating function reduces to finding the stationary point of the Hamiltdraan
a function of the variables andQ. This can be done by solving the equatiggsi =0 andd,H=0.

The generating function is then obtained by substituting the solufi@ns} into the Hamiltonian.
In the previous section we have shown that this problem can be solved using path integral
methods, and the solution can be represented diagrammatically. In the next section we will exploit
the full strength of the path integral formalism in order to generalize the diagrammatics to an
arbitrary network, and for the case of time-dependent charges. However, in the stationary limit, the
conceptual simplicity of the problem of finding the stationary point of the fundtigndicates that
there should exist a simple iterative procedure for evaluating the cumulants up to a given order. In
this section we use classical mechanics methods to prove that this is indeed the case.

We first make the variable transformation— X\, andiy— x, so that the Hamiltonian be-
comes a real function. For=0 the saddle point is located €9y, \o}. For nonzeroy the saddle

point moves to a new positiofQ,\}, which depends ory, and the HamiltoniarH(Q,\,x)
becomes the generator of cumulants of the current,

(M) = d"H(Q\, Y)/dx" =0 - (62)

By expressing the totgy derivative in terms of partial derivatives, the average current can be
written as
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(1) =(3,+Q"dg+ N dH (QN, V00,0 (63

whereQ’=dQ/dy,\'=d\/dy are y dependent. We wish to eliminate the functigp’sand\’ and
to express the cumulant in terms of the partial derivativell.oThis is done by applying a total
derivative to the equations of motiojiigH]"=[4\H]’' =0 and leads to two equations Q¥ and\’
which may be solved,

{o\H,a, H} {doH, d,H}
- X [ o TX J
Q= {doH, \H}’ ~ {doH,H} (4

where{A,B} is the Poisson bracket, defined{#s B}=d,A doB—doA 4,B. The solutions have to
be inserted into the Eq63).

The advantage of this representation is clear: Now the right hand side of th{e3Fgbefore
taking thex=0 saddle pointdepends only on variables Q, andy. Therefore, we can apply the
procedure again in order to express the high-order cumulant in terms of partial derivatives. This
procedure solves the problem by giving a single operator,

Dog + {o\H,a,H}do = {doH, 3, H} o,
X {doH, a\H}

: (65)

which, being appliech times to a given Hamiltoniakl and evaluating the resulting expression at
the y=0 saddle point, gives cumulants of current:

{1 =D"H (Q\ Ylyeo0ung- (66)

This approach is obviously more simple compared to the diagrammatic method, since in the
diagrammatics, after drawing all of the diagrams, they have to be evaluated individually by taking
many partial derivatives of the Hamiltonian and evaluating them ajyth@ saddle point. With
this new approach, given the Hamiltonibf) the operator D may be constructéb) and with a
mathematical program, an arbitrary cumulant may be easily comga&d

It is easy to see the importance of the minimal correlation coordinates in this solution. After
applying D several times, the derivative quotient rule generates a large number of denominators,
{dqH , \H}=(dod\H)(d\dqH) — (dodoH) (d\d\H). At x=0, as we argued previousl§pdoH=0, and
it is possible to change coordinates so #Wgt,H=-1. As a result, the denominator ({66) is equal
to 1, which greatly simplifies the expansion. Finally, we would like to stress that the operator
approach, introduced in this section for the one node case, can be easily generalized to a network.

D. Network cascade diagrammatics: Correlation functions

Consider now a general network. In the Sec. IV B, we saw that the dominant contribution to
Eq.(47) arises from tree-level diagrams. On time scakesy, the time dependence drops out, and
the current cumulants are static. We now generalize the diagrammatic rules presented in the Sec.
IV B to investigate time- and node-dependent correlation functions of conserved and absorbed
charges, Eq(19). To define the network, we must arbitrarily label the current flow, yielding a
directed network. By doing so we fix the signs of the elemejy;F—HBa of the Hamiltonian. In

particular, the elements of the generalized conductance n@rix

G = #H
P 9(iN.) 9Qp
(evaluated aQ=Qy,A=0) are negative or positive depending on the chosen direction. If we

segregate absorbin@) and conservingc) nodes, the conductance matf'Rmay be put in block

form. Two of them, the blockécc (real symmetrig and éac will be relevant. This gives us the
necessary tool to define the generalized minimal correlation coordinates. We consider the fre-
quency dependent response by letting the evolution time extent to infinity, and introduce the time

(67)
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Fourier transform of the variabld€°, A¢, x¢, x*}, where the vectofx®, ¥} is a time-dependent
source term introduced to produce correlation functions of the conserved and absorbed currents
[see Eq(19)].

Following the steps of Sec. IV B, we again split the action into two p&tsS,+ fdtV, where

S) = | dt[_ ACQC + AcéccQC + (Xcécc + Xaéa&Qc]

=j f f d(;da)’[AC(iwr + écc)QC"‘ (Xcécc"' Xaéac)Qc]5(w + o), 68)
T

and where we have dropped tldein front of the variables for simplicity. As in Sec. IV B, the
generalized minimal correlation coordinates are defined by shifting and rescaling tragiables
in order to eliminate they variables in EQ.(68). However, becausg is now a vector, the
proportionality factor must be a frequency dependent matrix,

A%w) — DT(@)[A%w) + Gl x() + Gl x*(@)]. (69)

Here I5(w) is the matrix network propagator,

D(w) = - (iwE + G) 2, (70)

andE is the identity matrix. It is straightforward to verify that after the shift, the functigitiV
becomes the generator of cumulants of minimal correlation currents, i.e., of the currents which are
solutions of the Langevin equations:

1= -iwQS =—iwX, Dyg(@)l g, (7138
By
122 2 GaaDarpl(@)l gy + 2y (71b)
Brya' Y

where Taﬁ are the bare noise sources as defined in E). We finally rescale y*(w)
— x%(w)/(iw) in order to replace conserved currents with charges; Q°.
The total action now acquires the following form

S=(2mi)! f doAS(- ©)Q%w) + f dtV[QS,DT(AS+ x%) + DTG! 2 x71, (72

where the simplified form of th& argument ofV follows after composing the various transfor-
mations. Following the plan of the previous section, we replace the charge and counting variables
{Q(w),A(w)} by functional derivatives with respect to the charge and counting sources
{J(w),K(w)}, and take th&/ term outside of the functional integral. The functional integrals may
now be performed to obtain

wak=exq [ |

The perturbatiory must now be expanded in a Taylor series with respect to all variables. The time
dependence only appears through the variables themselves, so the expansion coefficients will be
time independent, with the exception of the propagBtgs(w) multiplying the counting variables.

d“;d“"J(w’)K(w)a(w + w’)}. (73)
'
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©

($i1+"'+jn

V= ) |
{iwja%,la}m Q5+ 5(QS)In

(D" (IPMQY' -+ (QY'AQD* s+ ++ (Q) M)

0" 0D 0D e MNP (@) (@) 74
ly! l,! i) i k! k! i

As in the one node case, the vertie%g(l%} vanish. We note again that the notation chosen for the
expansion coefficients in Eq74) connects the formalism described here with the Langevin
equation point of view. The minimal correlation cumuldgt -)),,, may be calculated either by the
expansion procedure described by Eq®) and(74), or by expressing the physical currents and
charges in terms of the current source cumulants by solving the Langevin equations for currents
and charges, given by E¢rl).

The nth order irreducible correlatof(I5(w,)- - Qf(w,))) may be expressed as a tree-level
diagram withn external lines representing absorbed curréfsnd conserved charg€¥,. Every
vertex is local in time, so if there agelegs at a vertex, each is assigned an independent frequency,
while the time integral imposes overall frequency conservatih; ;). The cascade rules are
generalized as follows:

(1) Every vertex represents the object

Sty " Faf(onIBa(@110)*+ QA0 im

which is multiplied by as-function conserving overall frequenc¥(=iL; w;);
(2) the minimal correlation cumulantsl?,,(w.+1) - Qr(w,)))y May be evaluated by expressing

them in terms of cumulants of sourc(s(ﬂ;g[;)) via the solutiong71) of the Langevin equa-
tions, or by Eq.(74) if the Hamiltonian is known;

(3) the internal dashed arrow goes fr@@j(w) to qc(,,- It conserves the node indexand the
frequencyw;*® :

(4) external lines for absorbed currents and conserved charges originaté.feonor Q%(w) of
the vertexes. They conserve the node index and the frequency;

(5 sum over all internal node indices, and integrate over all internal frequencies to remove all
but one of the frequency delta functions;

(6) the result has to be multiplied by the total number of inequivalent permutations.

The cascade rules are easily extended to the field thisery Sec. ). The functional analog
to the inverse conductance matrix is the operator

- 5h -
-1 N — — _ !

G (r r)_ﬁ)\(r)ép(r’) Sr=r")VDV. (75)
The diffusion propagatofiw+G™)~* can be used to solve the Langevin equatict® for the
densityp(w,r) and current(w) in order to evaluate minimal correlation cumulants. We would like
to stress that these cumulants are limited to second order only, because in the diffusion limit the
noise sources are Gaussian. The summation over node indices is replaced with an integration over
the coordinate .

V. APPLICATIONS

The formalism presented above is intentionally abstract and general. This is to facilitate
maximum applicability and not to tie it to a particular field. However, it is important to give
concrete examples. For this reason, we give a detailed treatment of two problems. As a first
problem, we consider the saddle-point equations of the 1D field theorieB fand F being
arbitrary functions of the density [see Eq.(33)]. We apply the results of this analysis to the
transport in a diffusive mesoscopic wire at zero temperature, rederive the FCS generating function
of the transmitted charge obtained in Refs. 8 and 10, and give new results. We also prove the
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conjecture made in Ref. 22 that the current noise of the diffusive symmetric exclusion process at
half-filling is Gaussian, i.e., all high-order cumulants of transmitted charge vanish. In the end of
the Sec. V A we generalize our results to multi-dimensional diffusion models and prove the
universality of their transport statistics. As a second problem, we address the statistics of charge
fluctuations in a mesoscopic chaotic cavity. We explicitly find the probability distributions for
different physical configurations.

A. FCS for one-dimensional field theories. The mesoscopic diffusive wire

Before demonstrating our solution for the FCS of the mesoscopic diffusive wire specifically,

we first consider the general 1D field theory with the act{B8). In the stationary limit,p=X\
=0 the action can be written as

L
S:tf dz{—Dp’)\’ +}F(7\’)Z}. (76)
0 2

The stationary saddle-point equations

OF
(F\'=Dp/)'=0, 2DN"+—-(\)?=0, (77)
P

can be partially integrated leading to the following two equations:

Dp' = £\1%2-2HF, (783
N =2HI(Z-Dp'). (78b)

The two integration constan’s=-Dp’ +F\’ andH=-Dp’\’ +(F/2)(\")? are the conservegon-
ditional) current and the Hamiltonian density, respectively. These conservation laws follow from
the symmetries of our} field theory[see Eqs(38) and (39) and the surrounding discussijon
Thus we obtain the following result for the acti¢ro),

S=tLH. (79

Equationg78) and(79) represent the formal solution of the FCS problem for 1D diffusion models
with D(p) andF(p) being arbitrary functions gb. The following procedure has to be done in order
to obtain the cumulant generating functisty) of the transmitted charge:

(1) The differential equatior(78g has to be solved fop(z) with the boundary conditions
p(2)|,=0=p. and p(2)| =, =pr. The constant should be expressed through the constants
pry aNd'H;

(2) next,p(2) is substituted into Eq;78b) which is integrated to obtaiR(z) with the boundary
conditionsA =0 and\r=J;

(3) finally, using the solution foi(z) the constant{ is expressed in terms gf, pgr, X, and
substituted into the actiov9).

We note that by expressirfg and y in terms ofZ, we may also formally obtain the logarithm
of the current distribution,

In P(1)=S(Z) -tZx(2), I—1, (80)

as a result of the stationary phase approximation for the inté@fitak [dy exd S(x) —tlx] and
because/H /dx=Z/L.

As an example of the 1D field theory, we consider the FCS of the electron charge transmitted
through the mesoscopic diffusive wire. When the chemical potential diffei®peew, —ug>0 is
applied to the wire, the electrons flow from the left lead to the right lead with the average current
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l,=e'GAu, whereG is the conductance of the wire. The elastic electron scattering causes non-
equilibrium fluctuations of the current. At zero temperature, and for noninteracting ele¢tnens

cold electron regimg the zero-frequency current noise power has been f5hdto be equal to
{1%)=(1/3)ely, i.e., the noise is suppressed compared to the Poissonian value. The suppression
factor 1/3 was shown to be univeréafCi.e., it does not depend on the character of the disorder

or on the shape of the wire. The FCS of the transmitted charge has been studied in Refs. 8 and 10
using quantum-mechanical methods, and recently in Ref. 22 using a classical method with the
following result for the generating function of cumulants of the dimensionless cligtge

S(x) = (tly/e)arcsinA[ vexp(x) - 1]. (81)

Here we will rederive this result using our classical method.

On the classical level, the electrons in the diffusive wire are described by the distribution
function f(z). Under transport condition@nd at zero temperatyrethis distributionf(z) varies
from f_ =1 in the left lead tofg=0 in the right lead. Starting from the Langevin equa??oas
described in Sec. Il or, alternatively, taking the continuum limit for the series of mesoscopic
cavities>® we arrive at the actioq76) with the forn?*

1/2
S= (tlole)f df-f'A" +f(1-HH(\")?], (82

-1/2
where we have rescaled the coordinate(z) has been replaced with the distributiéfz), and
whereD=1, andF=2f(1-f) up to the overall constanp/e. This form of F is quite general for
fermionic systems. It originates from the Pauli blocking factors, i.e., the transition probability is
proportional to the probability that the initial state is populated times the probability that the final
state is emptﬁltr’ Applying now the procedure described in the beginning of this section, we solve
the saddle-point equations and find the fieldsnd \,

1. sinh(2a2)

fzx) = 2[1 sinh « } (833

A(z,x) = 2 arctanftanh a/2)tanH az)], (83b)
a=arcsintivexp(y) — 1], (830

where’H =a“, so that according to the E¢79) we immediately obtain the resui8l).
The logarithm of the current distribution[lA(1)] can be now found from Eq80). We obtain
the following result:

In[P(1)] = - (tlye)[2a coth a In(cosha) - a?], (84)

wherea has to be expressed in terms®f1/1, by solving the equation

a cotha=1/1,. (85)

The last equation has real positive solutions; &<, for I >1,, and pure imaginary solutions
a=ipwith 0<B< /2, forl <ly. The distributionP(l) is strongly asymmetric around the average
currentl =l (see Fig. 7. It has the following asymptotics: IR=—(tly/€)[Z?-(2 In 2)Z], for T
=1/1,5>1, i.e.,P has a Gaussian tail, and R=—(72/4)(tl,/e), for 1=0.

We also plot the conditional electron occupatidm, 1), Eq. (839, for different values of the
normalized current/l,. There are several interesting points to strégg-or large currentd,> |,
the functionf drops mostly at the ends of the wire, while for small currehts|,, the drop off
is mostly concentrated in the center of the wire. This effect has a simple explanation. At the end
points of the wirez=+1/2, theoccupationf(z) is fixed independent of the particular value of the
currentl. On the other hand, its derivative takes the vdlie-Z=-1/1,atz=+1/2,which can be
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FIG. 7. The logarithm of the distribution of the current through a mesoscopic diffusive wire as a function of tHélgatio
of the current to its average vallig The distribution is strongly asymmetric, with the Gaussian taledl,. Inset: The
electron occupatiofiinside the wire as a function of the rescaled coordizatender the condition that the average current
=1y, no currentl =0, and large currert=5I, has been measured.

easily verified using Eq4839 and (85). As a result,f(z) deviates from its linear behaviof(z)
=1/2-z, characteristic of the average value of currént,1. The actual reason for this effect is
that according to Eqi42b) the total currenZ=—f'+ v contains a contribution from the source of
noise,v. The greatest contribution is concentrated at the center of the wire, where the noise power
F=2f(1-f) has its maximum, while it vanishes at the ends of the wire. Since the cufriant
conservedf’ has to be redistributed in such a way as to partially compensate the effect of the
sourcev. (i) Fluctuations off are strongly suppressed at the ends of the wire, which is imposed
by the boundary conditions, and at the center of the wire, as a result of the discrete symmetry,
{z—-z;f—1-f}. (iii) Eq. (85) has additional solutions witi8> 7/2. These solutions are not
physical however, sincébecomes negative or larger than 1 leading400, which is impossible
atT=0.

Returning to the saddle-point equatiai7¥), we note that ifsF/ 5p=0 for a particular density
po, then the field(z)=py, and\(z)=yxz/L solve these equations. The fluctuations of the current
become Gaussian with the noise pov¢f))=F(py)/L. This generalizes and proves the conjecture
made in Ref. 22 that the noise of the diffusive symmetric exclusion process is Gaussian at
half-filling, f=1/2.

As a final remark we note that the whole class of multi-dimensional field theories,

s=tf dr[- VADVp+(1/2 VAF V] (86)
Q

with I5:D(p)?, IA::F(p)?, andT being an arbitrary constant symmetric ten¥obear the same
kind of the universality as the shot noise in diffusive conductors discussed &dem/&efs. 49 and
50). The reason is that the field theory with the act{86) can be mapped on the 1D theory with
the action(76) by making use of the parameterization

p(r) =ple(r)],  Nr)=Ne(r)], (87)

where the functionp(r) satisfies the equation

V[TV e(r)]=0. (88)

Using Eqs(77) for p and\ as functions ofp, it is straightforward to verify that the fieldgr) and
\(r) given by (87) and (88) satisfy the saddle-point equations for the act{86). One of the
equations is the conservation of current:
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j=—DVp+FVA=ITVe. (89)

Since the 1D Hamiltonian density is conserved, the action takes the following form

S=tGH, (90)
where the constard depends only on the geometry of the boundatyby Eq. (88):

G= drw%vcp:f ds- ¢TV . (92)
Q Q)
Consider now a two-terminal diffusive wire, so that the surfa@econsists of the lefo )
and rightdQg contact surfaces, and the open surfafg with no current through it. We choose
the boundary conditions fap to be

¢, =0, @M, =1, ds-TV )y, =0, (92)

so thatp(r)|s0, =pL, P(N]s0,=Pr MD)[an, =0, M1)|s0,= X, @ndds-j(r)[,o =0. ThenH becomes a
function of p;, pr, and x, and the action is the generator of the cumulants of the transmitted
charge. If insteadH and y are expressed in terms @f(as above for the 1D theoyythen one
obtains the logarithm of the distribution of the curren{,A)]=S(I)—-tlx(I), wherel=GZ, ac-
cording to Egs(89), (91), and(92). The constan§ may be interpreted as a “geometrical conduc-
tance” of a wire. In particular, in the “ohmic” regime, i.e., whBnis independent op, we have
lo=Z(x)|,=0=D(p_.—pr), and thereforeG=1,/[D(p_—pr)]. In this case, the rati®/l, does not
containG and becomes fully universal, proving also the universality of the r¢8lijtas a special
case.

To summarize, we have proven the universality of the FCS of the transmitted charge for a
two-terminal multi-dimensional generalized wire described by the a¢86with the noise tensor

F(p)'i’, being an arbitrary function of the charge dengityand with the constant diffusion tensor

DT. The universality means that the FCS depends neither on the shape of the conductor, nor on its
dimensionalityr?3 The FCS of a mesoscopic wire given by E1) is a particular example of

universal FCS. In the more general case, wheis a function ofp, the FCS depends on the
geometry through only one parametgrthe geometrical conductance given by E2fl).

B. Charge fluctuations in a chaotic cavity

As another example of the applicability of the stochastic path integral approach, we now
consider transport through a chaotic cavity. This problem is often investigated in mesoscopic
physics because of its simplicity and conceptual clarity. A cavity consists of a large conducting
island of irregular shape that is connected to two metallic leads through quantum point contacts
(see inset of Fig. B The distinctive property of the chaotic cavity separating it from diffusive
conductors is that the conductance is determined solely by the ballistic point contacts. The chaotic
cavity itself may be either disordered or ballistic. Chaotic cavities can be described by a semi-
classical theory if the point contacts have conductances much largeetHanThe statistics of
current flow through the cavity have been addressed using various methods. The zero-frequency
noise power has been calculated using random matrix tﬁ‘bmyd the minimal correlation
principle.18 The higher order current cumulants have been obtained in Refs. 7 and 20. The results
are in complete agreement with random matrix theory.

In this section we will address another type of statistics. In a typical experimental setup, the
cavity is connected to the electrical circuit not only through the leads, but also through nearby
metallic gates via the electrostatic interaction. Observing potential fluctuations at these additional
gates gives direct insight into the statistics of charge on the cavity. The noise power of the charge
fluctuations in this system has been calculated in Ref. 55. The full statistics have been recently
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FIG. 8. The logarithm of the distribution of char@® in a symmetric cavityG, =Gg, averaged over measurement time
in the long time limit7> 7, and at zero temperature. The results are presented for several transpdreoictee point
contacts. It is clearly seen that the tails of the distribution grow in the tunnelingllirdit. The distribution is symmetric,
i.e., odd cumulants vanish.

addressed using a random matrix the‘ri?nytere, we rederive these results using the stochastic path
integral, show new results on the temperature dependence of these statistics, and also investigate
the instantaneous fluctuation statistics.

In a semiclassical approach, both lead® and the cavity are described by electron distribu-
tion functionsf ,fr, andf. The Fermi functions in the leads=fr(E—-pu,) are characterized by
their chemical potentighk, and their temperatur€. The chaotic electron motion inside the cavity
makes the cavity distribution functiof{E,t) isotropic and position independent. Only its energy
dependence must be retained. From now on we set the electron charge ®=dnd,hen the
chargeQ in the cavity is given in terms of the electron distribution function and density of states
N as Q=Ng[dEf. The average value of charge is determined by the low-energy cutoff of the
integral and is not relevant for the present discussion. The charge and electrostatic potential of the
cavity are related by a geometrical capacita@geIn the following, we restrict ourselves to the
casng>e2NF which describes complete screening of the charge in the cavity. A more general
discussion can be found in Ref. 56. To analyze the time evolution of the charge, we note that if the
size of the cavity is smaller than the electron—electron and electron—phonon scattering length,
every electron entering the cavity at a certain energy leaves it at the same energy. The single
electron energy is thus conserved and we can formulate a current conservation law separately for
each energy intervalE,

Nef(E,t) = I (E,t) + JR(E.Y), (93)

where J,, denote ingoing particle currents per energy inte&lin the left and right contacts.
These currents are described by binomial processes with the cumulant generating function given

by®
H,(f,iN,)JdE=TIG,dE In[1 +Tf (1 —f) (e« = 1) +Tf(1 —f ) (e ™= 1)], (94)

where we have introduced the conductances of the point coriigcts=L,R, and their transpar-

encyTl.
The quantity of interest is the total number of electrons in the cavity averaged over the

measurement time,

Q.= (Ng/7) f it f dEF(E,1). (95)
0

We first consider the long time limit;> 7y, whererp =N/ (G| +Gg) is the average dwell time of
an electron in the cavity. In this limit, the action is stationary with respect to the varibhlad\,
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S= Tf dE[H(f,iN) +i(Ne/n)xf], H=H_+Hg, (96)
where the external variablg generates the statistics of the desired quar@ity
At zero temperaturd =0, the variables\ and f are independent of the ener@y and the

integration in Eq(96) amounts to a multiplication b u=u, — ug. Evaluating the Fourier trans-
form of the characteristic functiod(iy),

Z(iy)=(@2m™ f dQa\ exp(S), (97)

we express the full probability distributioR(Q,) of charge on the cavity as an integral

P(Q,)=(2m™* f d\ exgd TApH(f,iN)],  F=Q./(NpAw). (98)

This integral will be calculated in the saddle-point approximation. For the tunneling llrsit
and for open point contacls=1 we obtain

In P(Q,)r<y = — TGAu[VF(1 —fo) = Vfo(1 - )T2, (993
f 1-f

In P(Q)r=1 = TGAﬂ[fo In(—) +(1- fo)ln< )] , (99b)
fo 1 - fo

whereG=G, +Gg, and where we have introduced the average distribution funéfes, / (G,

+Gp) in the cavity. We summarize that the resu®9) have been obtained under the conditions
T=0, >, and forI'<1 andI'=1. These results can be easily generalized to the case of a
multi-terminal cavity.

Although the general case of an arbitrary transpardhbgs been also solved analytically, the
final expression for the charge distribution is too lengthy to be presented here. The Fig. 8 shows
the distributionP(Q),) at zero temperature for various transparentiex the point contacts. The
cavity is taken to be symmetriG, =Gg. It is clearly seen that the tails of the distribution grow
towards the tunneling limit.

At finite temperature, further analytical progress can be made by considering the first few
cumulants of the charg®,. The integral(96) for the cumulant generating function has to be
evaluated at the saddle point. Fpe0 the solution of the saddle-point equatio?® JA=0 and
S/ of =0 are simply given by\=0 andf=f,, wheref,=(G, f  +Ggrfr)/(G +Gpg) is the average
electron distribution function in the cavity. From the diagrammatic technique discussed in Sec. IV
we derive analytical expressions for the first few cumulants. The second cumulant has been
obtained in Ref. 55. As an example, we present here the result for the third cumulant for the case
of open point contactd; =1:

275 G.GR(GL - Gp)

<<Q§>> __ . A —kgT sinh(Au/kgT)

(G + GR)? Au+3 cosiAulkgT) -1 | (100
The first few cumulants are plotted in Fig. 9 as a function of the dimensionlesa phidgT. Note
that the fourth cumulant may change its sign as one goes from a symmetric @awidy to an
asymmetric cavity(3=0.9).

So far we have considered the time of measureméonger than the dwell timep. Next we
consider the opposite limit< 7 (but still larger thanty=A/Aw) and study the instantaneous
fluctuations of the charg® in the cavity at zero temperaturé=0. For this purpose we will use
the stochastic path integr@) for the propagatod(Q;, Q;,t) of the cavity charge. The distribution
P(Q) of instantaneous fluctuations can be obtained by taking theo limit of the propagator
U(Qs,Q;,t) and settingQ;=Q. We note that in the long time limit> 75, the initial stateQ;
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FIG. 9. Cumulants of the charge inside a chaotic cavi®)), n=2,3,4(in arbitrary unitg as functions of the dimen-
sionless potential differencéu/ksT. The parameteB=(G_—Gg)/(G_+Gg) characterizes the asymmetry of the cavity.

relaxes to the stationary sta@ and as a result the saddle-point expression of the propagator

=exf(S;p factorizes according t&,=$(Q)+S(Q) +S(Qy). Here the stationary contribution to
the action is zero$,=0, since there is no charge accumulation on a long time scale. We will show
that the initial state contribution vanishé$=0, so the system looses its memory about the initial
state. Thus we obtain IR(Q)=%(Q).

We now focus on the case of a cavity with two tunneling contélcts 1). Using the Hamil-
tonians in Eq(94), and replacing the counting variable—i\, we write the action as

S=GAu f dif oA f + o\, )], (1019

he= (1 - fo)f(€" - 1) + fo(1 - f)(e™ - 1), (101b

wherehg is the scaled Hamiltonian. The saddle point equations take the following form

mof = = (1 - fo)fer + fo(1 - Fe™, (1023

7o\ = sinh(\) + (1 — 2fg)[cosh\) — 1]. (102
The solution of the Eq(102b for A reads

1+ Afo qut/TD)
1-A(1-fpexpt/m) |’

At =In (103
whereA is the integration constant.

To show that the initial contribution to the acti&is zero, we note that independent of the
constantA, the absolute value of is a growing function with the stationary state given Yy
=0 att=-. This means that starting from early timgs— -, the solutions are\(t)=0 and
f(t)—fo=[f(tg) —folexd—(t—ty)/ 75]. They describe the relaxation of the initial stdtg,) to the
stationary statd="f,. Substituting these solutions to E¢401) we immediately find tha§=0.

After making this point we skip the rest of the details and present the final result for

In P(Q)=$(Q):

In P(Q)F<1:—TDGA,U,|:f In<l) +(1—f)|n<1—f>] (104
fo 1 - fo
which can now be compared to the resyfl9). The cumulant generating function for the distri-
bution (104) is given by S(x)=mpGAw In[1+fy(eX—=1)]. Note thatpGAu=NgAu is the total
number of the semi-classical states in the cavity which participate in transport. Therefore the
distribution(104) can be interpreted as being a result of uncorrelated binomial fluctuations of the
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Fermi occupations of each semi-classical state. We would like to mention that the same result can
be obtained by solving the stationary master equation.

VI. CONCLUSIONS

We have put forth a stochastic path integral formulation of fluctuation statistics in networks.
The mathematical building blocks of the theory &t¢ the probability distributions of transport
processes through the connect@®,a continuity equation linking the connector currents to the
charge accumulation in nodésharge conservationand(3) a separation of time scales between
nodal dynamics and connector fluctuations. The relevant action of the path integral is derived from
these considerations and is related to the probabiliticloarge conservingaths in phase space.

The dominant contribution to the statistics comes from the saddle point approximation to the path
integral, and the generating function for the interacting system is simply the action at the saddle
point. Fluctuations are suppressed by the number of transporting elementary charges in the net-
work. We have considered the continuum limit to obtain a field theory, and mapped it onto a
Langevin equation with Gaussian noise. Cascade diagrammatic rules were found in agreement
with Nagaev for the one node case, and extended to general current correlation functions in an
arbitrary network. Applications to the current statistics of the diffusive wire and fluctuation sta-
tistics of the charge inside a mesoscopic cavity were also discussed. As the building blocks of the
theory are classical probability theory, the potential application of this formalism is very broad and
applicable to any field where fluctuations are important, including mesoscopics, biology, econom-
ics, fluid and chemical dynamics.

Note addedAfter this paper was submitted for publication, the authors learned of previous
related work by Bertiniet al®>’ Although they did not consider transport statistics, they did
consider the probability to manifest a given macroscopic fluctuation of the particle density in
diffusive lattice gas models and arrive at the action B8). However, the Gaussian nature of the
local fluctuations was assumedpriori. We thank B. Derrida for bringing these papers to our
attention.
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